Eigenvalues & Eigenvectors
Step-by-step solution for eigenvalues of [[4,2],[1,3]]. Follow each step to understand how to solve this problem.
Given 2×2 matrix A:
[4, 2] [1, 3]
For eigenvalues, we solve det(A - λI) = 0
A - λI = [4-λ, 2]
[1, 3-λ]
det(A - λI) = (4-λ)(3-λ) - (2)(1)
Expanding:
= 4·3 - 4λ - 3λ + λ² - 2
= λ² - 7λ + 10
Characteristic polynomial:
λ² - 7λ + 10 = 0
Where:
• Trace(A) = 4 + 3 = 7
• det(A) = 4·3 - 2·1 = 10
Using quadratic formula:
λ = (trace ± √(trace² - 4·det)) / 2
λ = (7 ± √(7² - 4·10)) / 2
λ = (7 ± √9) / 2
λ₁ = (7 + 3) / 2 = 5
λ₂ = (7 - 3) / 2 = 2
Two distinct real eigenvalues
Solve (A - λI)v = 0:
[-1, 2][v₁] [0]
[1, -2][v₂] = [0]
From first equation: -1v₁ + 2v₂ = 0
Eigenvector v1 = [-2, -1]ᵀ
(or any scalar multiple)
Solve (A - λI)v = 0:
[2, 2][v₁] [0]
[1, 1][v₂] = [0]
From first equation: 2v₁ + 2v₂ = 0
Eigenvector v2 = [-2, 2]ᵀ
(or any scalar multiple)
Verify Av = λv for each eigenvalue:
For λ1 = 5:
Av = [-10, -5]ᵀ
λv = [-10, -5]ᵀ
Av = λv ✓
For λ2 = 2:
Av = [-4, 4]ᵀ
λv = [-4, 4]ᵀ
Av = λv ✓
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
EIGENVALUE RESULTS
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Eigenvalues:
λ₁ = 5
λ₂ = 2
Eigenvectors:
v₁ = [-2, -1]ᵀ
v₂ = [-2, 2]ᵀ
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━