Eigenvalues & Eigenvectors
Step-by-step solution for characteristic polynomial [[1,2],[3,4]]. Follow each step to understand how to solve this problem.
Given 2×2 matrix A:
[1, 2] [3, 4]
For eigenvalues, we solve det(A - λI) = 0
A - λI = [1-λ, 2]
[3, 4-λ]
det(A - λI) = (1-λ)(4-λ) - (2)(3)
Expanding:
= 1·4 - 1λ - 4λ + λ² - 6
= λ² - 5λ + -2
Characteristic polynomial:
λ² - 5λ + -2 = 0
Where:
• Trace(A) = 1 + 4 = 5
• det(A) = 1·4 - 2·3 = -2
Using quadratic formula:
λ = (trace ± √(trace² - 4·det)) / 2
λ = (5 ± √(5² - 4·-2)) / 2
λ = (5 ± √33) / 2
λ₁ = (5 + 5.744563) / 2 = 5.372281
λ₂ = (5 - 5.744563) / 2 = -0.372281
Two distinct real eigenvalues
Solve (A - λI)v = 0:
[-4.372281, 2][v₁] [0]
[3, -1.372281][v₂] = [0]
From first equation: -4.372281v₁ + 2v₂ = 0
Eigenvector v1 = [-2, -4.372281]ᵀ
(or any scalar multiple)
Solve (A - λI)v = 0:
[1.372281, 2][v₁] [0]
[3, 4.372281][v₂] = [0]
From first equation: 1.372281v₁ + 2v₂ = 0
Eigenvector v2 = [-2, 1.372281]ᵀ
(or any scalar multiple)
Verify Av = λv for each eigenvalue:
For λ1 = 5.372281:
Av = [-10.744563, -23.489125]ᵀ
λv = [-10.744563, -23.489125]ᵀ
Av = λv ✓
For λ2 = -0.372281:
Av = [0.744563, -0.510875]ᵀ
λv = [0.744563, -0.510875]ᵀ
Av = λv ✓
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
EIGENVALUE RESULTS
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Eigenvalues:
λ₁ = 5.372281
λ₂ = -0.372281
Eigenvectors:
v₁ = [-2, -4.372281]ᵀ
v₂ = [-2, 1.372281]ᵀ
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━