Triangle Area: Sides 8, 15, 17

Calculate the area of a triangle with sides 8, 15, and 17 using Heron's formula.

Side a: Side b: Side c:
Area: Area = 60 square units
Step-by-Step Solution
Step 1 Given Sides
a = 8
b = 15
c = 17
Step 2 Heron's Formula

Area = √[s(s-a)(s-b)(s-c)]

where s = (a + b + c) / 2

Step 3 Calculate Semi-perimeter

s = (a + b + c) / 2

s = (8 + 15 + 17) / 2

s = 20
Step 4 Calculate Factors

s - a = 20 - 8 = 12

s - b = 20 - 15 = 5

s - c = 20 - 17 = 3

Step 5 Calculate Product

s(s-a)(s-b)(s-c)

= 20 × 12 × 5 × 3

= 3600

Step 6 Calculate Area

Area = √3600

Area = 60

Step 7 Additional Properties

Perimeter = 40

Inradius (r) = Area / s = 3

Circumradius (R) = abc / (4·Area) = 8.5

Step 8 Final Answer

Area = 60

Heron's Formula

For a triangle with sides a, b, and c:

s = (a + b + c) / 2 (semi-perimeter)

Area = √[s(s-a)(s-b)(s-c)]

For this triangle: s = 20