Triangle Area: Sides 5, 5, 5

Calculate the area of a triangle with sides 5, 5, and 5 using Heron's formula.

Side a: Side b: Side c:
Area: Area = 10.825318 square units
Step-by-Step Solution
Step 1 Given Sides
a = 5
b = 5
c = 5
Step 2 Heron's Formula

Area = √[s(s-a)(s-b)(s-c)]

where s = (a + b + c) / 2

Step 3 Calculate Semi-perimeter

s = (a + b + c) / 2

s = (5 + 5 + 5) / 2

s = 7.5
Step 4 Calculate Factors

s - a = 7.5 - 5 = 2.5

s - b = 7.5 - 5 = 2.5

s - c = 7.5 - 5 = 2.5

Step 5 Calculate Product

s(s-a)(s-b)(s-c)

= 7.5 × 2.5 × 2.5 × 2.5

= 117.1875

Step 6 Calculate Area

Area = √117.1875

Area = 10.825318

Step 7 Additional Properties

Perimeter = 15

Inradius (r) = Area / s = 1.443376

Circumradius (R) = abc / (4·Area) = 2.886751

Step 8 Final Answer

Area = 10.825318

Heron's Formula

For a triangle with sides a, b, and c:

s = (a + b + c) / 2 (semi-perimeter)

Area = √[s(s-a)(s-b)(s-c)]

For this triangle: s = 7.5