Triangle Area: Sides 5, 12, 13

Calculate the area of a triangle with sides 5, 12, and 13 using Heron's formula.

Side a: Side b: Side c:
Area: Area = 30 square units
Step-by-Step Solution
Step 1 Given Sides
a = 5
b = 12
c = 13
Step 2 Heron's Formula

Area = √[s(s-a)(s-b)(s-c)]

where s = (a + b + c) / 2

Step 3 Calculate Semi-perimeter

s = (a + b + c) / 2

s = (5 + 12 + 13) / 2

s = 15
Step 4 Calculate Factors

s - a = 15 - 5 = 10

s - b = 15 - 12 = 3

s - c = 15 - 13 = 2

Step 5 Calculate Product

s(s-a)(s-b)(s-c)

= 15 × 10 × 3 × 2

= 900

Step 6 Calculate Area

Area = √900

Area = 30

Step 7 Additional Properties

Perimeter = 30

Inradius (r) = Area / s = 2

Circumradius (R) = abc / (4·Area) = 6.5

Step 8 Final Answer

Area = 30

Heron's Formula

For a triangle with sides a, b, and c:

s = (a + b + c) / 2 (semi-perimeter)

Area = √[s(s-a)(s-b)(s-c)]

For this triangle: s = 15