Triangle Area: Sides 3, 4, 5

Calculate the area of a triangle with sides 3, 4, and 5 using Heron's formula.

Side a: Side b: Side c:
Area: Area = 6 square units
Step-by-Step Solution
Step 1 Given Sides
a = 3
b = 4
c = 5
Step 2 Heron's Formula

Area = √[s(s-a)(s-b)(s-c)]

where s = (a + b + c) / 2

Step 3 Calculate Semi-perimeter

s = (a + b + c) / 2

s = (3 + 4 + 5) / 2

s = 6
Step 4 Calculate Factors

s - a = 6 - 3 = 3

s - b = 6 - 4 = 2

s - c = 6 - 5 = 1

Step 5 Calculate Product

s(s-a)(s-b)(s-c)

= 6 × 3 × 2 × 1

= 36

Step 6 Calculate Area

Area = √36

Area = 6

Step 7 Additional Properties

Perimeter = 12

Inradius (r) = Area / s = 1

Circumradius (R) = abc / (4·Area) = 2.5

Step 8 Final Answer

Area = 6

Heron's Formula

For a triangle with sides a, b, and c:

s = (a + b + c) / 2 (semi-perimeter)

Area = √[s(s-a)(s-b)(s-c)]

For this triangle: s = 6